Vは(R上の)ベクトル空間,v1=u1,v2=u1+u2,v3=u1+u2+u3とする. u1, u2, u3 が V の基底のとき, v1, v2, v3 が V の基底になることを示せ。
v1, v2, v3 が 1 次独立かつVを生成することを示せばいいと思うのですが、c1v1+c2v2+c3v3=0としてv1、v2、v3を代入して計算したりしたのですがよく理解出来てないのかこの先が曖昧になってしまいます。まず、この考え方が間違っているのでしょうか?お時間ある際にお答え頂けると幸いです。
pon177-145.kcn.ne.jp (117.108.57.145)
Mozilla/5.0 (iPhone; CPU iPhone OS 14_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0 Mobile/15E148 Safari/604.1
|
|