[ ホームページ ] [ 携帯用URL ]
数学問題集「考える葦」 数学質問掲示板

わからない算数・数学の問題を質問して教えてもらいましょう。
回答できる人は積極的に回答し、みんなで教えあいましょう。
利用前に数学質問掲示板の注意事項を読んでください。
数式の書き方がわからない人は数学質問掲示板での数式の書き方を参考にして下さい。

[ EZBBS.NET | 新規作成 | ランキング | オプション ]
iモード&(絵文字)、au対応!ケータイからも返信できる無料掲示板!
名前
 E-mail 
題名
内容
   タグ有効 改行有効 等幅フォント
URL
 



教えてください  
名前:そう    日付:2018/4/16(月) 21:52
x,y,zが x-2y+z=4 および 2x+y-3z=-7 を満たす時、
ax^2+2by^2+3cz^2=18 が常に成立するような定数 a,b.cの値を求めよ。



Re: 教えてください
名前:WIZ    日付:2018/4/16(月) 22:52
x-2y+z = 4・・・・・(1)
2x+y-3z = -7・・・・・(2)
a(x^2)+2b(y^2)+3c(z^2) = 18・・・・・(3)

(1)より、
z = 4-x+2y・・・・・(4)

(4)を(2)に代入すると、
2x+y-3(4-x+2y) = -7
⇒ 5x-5y-12 = -7
⇒ y = x-1・・・・・(5)

(5)を(4)に代入すると、
z = 4-x+2(x-1) = x+2・・・・・(6)

(5)(6)を(3)に代入すると、
a(x^2)+2b((x-1)^2)+3c((x+2)^2) = 18
⇒ (a+2b+3c)(x^2)+(-4b+12c)x+(2b+12c) = 18
⇒ (a+2b+3c)(x^2)+4(-b+3c)x+2(b+6c-9) = 0

上記が恒等式である為には、
a+2b+3c = 0・・・・・(7)
-b+3c = 0・・・・・(8)
b+6c-9 = 0・・・・・(9)

(8)と(9)を加えると、
9c = 9
⇒ c = 1・・・・・(10)

(10)を(8)に代入すると、
b = 3c = 3・・・・・(11)

(10)(11)を(7)に代入すると、
a = -2b-3c = -2*3-3*1 = -9

# 計算間違いしているかもしれないので、スレ主さんにて良く検算してみてください。

「80648.教えてください」への返信

無料アクセス解析

アクセス解析の決定版!無料レンタルで最大100ページ解析!

   投稿KEY
   パスワード

EZBBS.NET produced by InsideWeb